Friday, December 31, 2010

2010 is coming to an end: Thank you!

New Picture (5)
This blog started for fun as a way to write about various aspects of sports science and possibly to provide freely accessible information for coaches and sports scientists around the World in a simple format and possibly using multimedia.
I personally think that this is something that scientists in academia should also do in order to reach a wider audience and also allow practitioners which cannot access scientific journals to read about their work. This experiment has been so far rewarding.
This year the blog received 18,128 visits from 130 countries. More than double the amount of the visits received last year!
Thank you for visiting this blog and thank you for the time you take to read what I write. I will do my best to continue in 2011 and hopefully provide some useful content!
In the meantime, I wish you all a great 2011!

Wednesday, December 22, 2010

Monitoring training load: the sum of all parts

Finally a little bit of spare time to do some blog writing. I have discussed the issues of monitoring training loads in my previous posts #1,#2,#3.

Also, I have written a previous post on strength and power assessment and vertical jumping tests.

DSCF1517

So, I am not going to discuss testing techniques here, but rather discuss what monitoring is all about and how to use it and offer some solutions/ideas.

Monitoring is definitively a sexy topic as everyone seems to be “monitoring” something in training. To the extent that some athletes are also now flooded with questionnaires, spreadsheets, forms to fill in. Most of such information I have to say it is totally useless as it does not get used and/or is totally irrelevant for designing better training programmes.

Why testing and monitoring training then? First principles first:

image

 

Testing and monitoring are useful tools only if they allow you to analyse the athlete’s level and be able to define and adapt a training programme.

If you are measuring something that does not help you in modifying the training plan you are wasting your time!

Also, you should make sure you measure things using methods that are valid and reliable! For more information about validity and reliability I suggest you read Will Hopkins’ excellent blog here. If you use measurement tools and modalities that are not valid and reliable you are wasting your time!

Testing and monitoring are tools to help you in making better decisions with your training planning. They are not standalone activities and you should question everyone of them in terms of cost effectiveness not only in financial terms but also in terms of athletes’ time. I have seen in too many sports athletes filling too many questionnaires and forms that are neither valid nor reliable nor provide any meaningful info to the coaching staff.

Planning training is just like business. Testing and monitoring will tell you where you are now. Strategic planning, analysis of specific performance trends (or world trends) and goal setting will help you in defining where you need/want to be. The how you get there is your training plan. If testing does not help you in getting a better HOW, it is just a useless data collection exercise.

image

 

 

 

 

 

 

 

 

 

 

Most of all, a proper approach to testing and monitoring can make sure you avoid insanity and learn what works and what does not work with you athletes.

image

So, what should be the approach?

In my view it is relatively simple. You need to be able to collate all the information you decided to collect, analyse it, make some sense of it and build a “dashboard” to visualise what is going on in order to be able to intervene where necessary. One of the approaches I suggested previously involves the use of radar charts to profile each individual athlete in comparisons to team scores. Similar approaches can be used even with individual athletes just comparing the magnitude of changes in their own scores:

image 

However, a more comprehensive view could be obtained using what I call a “performance equaliser”. The example below shows how some specific scores ca be plotted with an equaliser dashboard and visually show how specific parameters can change during a training season.

Performance Equaliser #1: Beginning of training phase

New Picture (2)

Performance Equaliser #2: After few weeks

New Picture (3)

This approach can be used to evaluate each athlete’s situation and take appropriate action as well as providing an easy to understand reporting structure. I have used green and red to express good change and not so good change.

Good, continuous data can also help in having a more complex data analysis approach involving the possibility of data modelling and simulation to be able to predict some outcomes. The example below from Busso et al. (2007, JAP) is just an example of the scientific literature on modelling.

image

This is one of the areas I am working on as I have a keen interest in computational statistical models applied to training and performance data and I have to say that there is very limited information on this topic and the few experiments also have very limited samples sizes (I found a couple of paper with n=1!). A review of the literature is now planned and I hope it will be ready for 2011 thanks to the hard work of an excellent PhD student working on this topic in my lab.

Many companies are now offering all sorts of software to analyse data using typical modelling approaches such us decision trees, Monte Carlo methods, etc. However it is important to state that the quality of the analysis is as good as the data you collect. So, again, you get what you put in it. Also, if your data are wrong, you will definitively make the wrong calls!

Despite the fact that simulations and data modelling have a certain degree of error (from very very large to relatively small), I still believe that this is something to pursue as I believe that nowadays some good continuous basic data can be collected and they can provide some useful information. As Richard Dawkins stated in his book “The Selfish Gene” “[…] of course there are good models of the World an bad ones, and even the good ones are only approximations. No amount of simulation can predict exactly what will happen in reality, but a good simulation is enormously preferable to blind trial and error!” R. Dawkins (2006).

Another useful approach can be the use of simple mathematical/financial laws as the Law of Diminishing Returns. The law of diminishing returns states that as the quantities of an input increase, the resulting rate of output increase eventually decreases.

This is exactly what we see in training. We increase and decrease training volume and intensity and we see changes in performance (output) which increase or decrease if we do too much work.

Recent work from my colleague Dr. Brent Alvar’s lab have shown how such approach can be used to analyse for example the effectiveness of strength training following a meta-analytical approach (for more info, click on the graph below).

image

Despite the fact that others criticised this approach for analysing the effectiveness of multiple vs. single sets using literature data, I believe that such approach can and should be used to understand the effectiveness of a training programme (or the return for your investment in time and effort). This should help in understanding the dose-response relationship to training loads in your athletes.

I am sure I have not covered a lot of aspects, and I am sure I will change my mind about a few of the things I wrote in the future (this is what learning is all about!). But at the moment I feel that monitoring training is a very useful thing to do and some statistical approaches can be applied to extract useful information to translate analysis into actions.

So, to summarise, here is some advice:

- Are your tests valid and reliable?

- What is the error of measurement? (What is the noise of your data?)

- What are you measuring?

- Are you able to use the data you gather to action changes to the programme?

- What is the investment in time/costs/effort to collect the data? Is it worthwhile?

_ How long does it take to receive the data in order to analyse them? (e.g. blood tests tend to be analysed few days after you collected them)

- Can you collect some valid, reliable, non subjective data with high frequency?

- Are the data good enough and frequent enough to allow you to make some predictions?

Wednesday, December 8, 2010

2011 WADA prohibited list is now online

The Prohibited List (List) was first published in 1963 under the leadership of the International Olympic Committee. Since 2004, as mandated by the World Anti-Doping Code (Code), WADA is responsible for the preparation and publication of the List. It is an International Standard identifying substances and methods prohibited in-competition, out-of-competition and in particular sports. For a link to the list, click on the WADA logo.

Substances and methods are classified by categories (e.g., steroids, stimulants, gene doping) and the list is updated every year and it is valid for a calendar year. The agreed process for the annual consideration of the List includes three meetings (see timeline below) of WADA's List Expert Group with a draft discussion List being published and circulated for consultation in June, following the second meeting.*
At its third meeting in September, the List Expert Group, following consideration of the submissions received from the consultation process, recommends the new List to the Health, Medical and Research Committee which in turn makes recommendations to WADA's Executive Committee. The Executive Committee finalizes the List at its September meeting.
The use of any prohibited substance by an athlete for medical reasons is still possible by virtue of a Therapeutic Use Exemption (TUE).

Few interesting modifications are:


1) To reflect the growing number of substances developed to stimulate erythropoeisis, hypoxia-inducible factor (HIF)-stabilizers have been added as an example.

2) Intra-muscular use of Platelet-Derived Preparations (PRP) has been removed from the Prohibited List.


3) Desmopressin has been added as an example of masking agent.

4) Methods that consist of sequentially withdrawing, manipulating and reinfusing whole blood into the circulation have been added to this category.

5) Methylhexaneamine has been transferred to the list of specified stimulants (it seems to be a popular choice these days...)

6) At the request of the Union Internationale de Pentathlon Moderne (UIPM) and due to changes introduced in the format of the competition, alcohol is no longer prohibited in Modern Pentathlon for disciplines involving shooting.

7) It is clarified that, in addition to Bobsleigh, beta-blockers are also prohibited in Skeleton, which are both governed by the Fédération Internationale de Bobsleigh et de Tobogganing (FIBT).

8) At the request of the Fédération Internationale de Gymnastique (FIG), gymnastics has been removed from this category.


Visualising what scientists read

The scientific publisher Springer has launched a free analytics tool that gives you a peek into how people are using the publisher's online content. The tool provides a number of visualizations based on real-time data aggregated from Springer's online offerings.

Springer's publications include nearly 5 million documents from about 41,000 e-books, 1160 book series, and 2524 academic journals. For this reason, the tool can be considered a useful and interesting way to look at what scientists are reading.

Here is a link to the European Journal of Applied Physiology’s stats.

image

Impressive tool!

Sunday, December 5, 2010

Strength and Conditioning Book

They say better late than ever, in this case it took few years, but eventually the project is now completed and the book will be out on the 17th of December.
It all started with a chat at a conference few years ago with my colleagues and friends Rob Newton and Ken Nosaka discussing the need of a comprehensive textbook on strength and conditioning providing information on the biological bases as well as practical applications.
This book is finally a reality thanks to the help and support of many colleagues who agreed to contribute to this project providing excellent chapters and creating a unique resource which we hope will be well received by anyone interested in Strength and Conditioning.

This book provides the latest scientific and practical information in the field of strength and conditioning. The text is presented in four sections, the first of which covers the biological aspects of the subject, laying the foundation for a better understanding of the second on the biological responses to strength and conditioning programs. Section three deals with the most effective monitoring strategies for evaluating a training program and establishing guidelines for writing a successful strength and conditioning program. The final section examines the role of strength and conditioning as a rehabilitation tool and as applied to those with disabilities.
The book is already available on Amazon and other online booksellers in hardcover and paperback editions.
A big thanks to our production team at Wiley-Blackwell and all the colleagues contributing to the chapters.

Details of the chapters are available here:
Foreword (Sir Clive Woodward).
Preface.
1.1 Skeletal Muscle Physiology (Valmor Tricoli).
1.2 Neuromuscular Physiology (Alberto Rainoldi and Marco Gazzoni).
1.3 Bone Physiology (Jörn Rittweger).
1.4 Tendon Physiology (Nicola Maffulli, Umile Giuseppe Longo, Filippo Spiezia and Vincenzo Denaro).
1.5 Bioenergetics of Exercise (R.J. Maughan).
1.6 Respiratory and Cardiovascular Physiology (Jeremiah J. Peiffer and Chris R. Abbiss).
1.7 Genetic and Signal Transduction Aspects of Strength Training (Henning Wackerhage, Arimantas Lionikas, Stuart Gray and Aivaras Ratkevicius).
1.8 Strength and Conditioning Biomechanics (Robert U. Newton).
2.1 Neural Adaptations to Resistance Exercise (Per Aagaard).
2.2 Structural and Molecular Adaptations to Training (Jesper L. Andersen).
2.3 Adaptive Processes in Human Bone and Tendon (Constantinos N. Maganaris, Jörn Rittweger and Marco V. Narici).
2.4 Biomechanical Markers and Resistance Training (Christian Cook and Blair Crewther).
2.5 Cardiovascular Adaptations to Strength and Conditioning (Andy Jones and Fred DiMenna).
2.6 Exercise-induced Muscle Damage and Delayed-onset Muscle Soreness (DOMS) (Kazunori Nosaka).
2.7 Alternative Modalities of Strength and Conditioning: Electrical Stimulation and Vibration (Nicola A. Maffiuletti and Marco Cardinale).
2.8 The Stretch–Shortening Cycle (SSC) (Anthony Blazevich).
2.9 Repeated-sprint Ability (RSA) (David Bishop and Olivier Girard).
2.10 The Overtraining Syndrome (OTS) (Romain Meeusen and Kevin De Pauw).
3.1 Principles of Athlete Testing (Robert U. Newton and Marco Cardinale).
3.2 Speed and Agility Assessment (Warren Young and Jeremy Sheppard).
3.3 Testing Anaerobic Capacity and Repeated-sprint Ability (David Bishop and Matt Spencer).
3.4 Cardiovascular Assessment and Aerobic Training Prescription (Andy Jones and Fred DiMenna).
3.5 Biochemical Monitoring in Strength and Conditioning (Michael R. McGuigan and Stuart J. Cormack).
3.6 Body Composition: Laboratory and Field Methods of Assessment (Arthur Stewart and Tim Ackland).
3.7 Total Athlete Management (TAM) and Performance Diagnosis (Robert U. Newton and Marco Cardinale).
4.1 Resistance Training Modes: A Practical Perspective (Michael H. Stone and Margaret E. Stone).
4.2 Training Agility and Change-of-direction Speed (CODS) (Jeremy Sheppard and Warren Young).
4.3 Nutrition for Strength Training (Christopher S. Shaw and Kevin D. Tipton).
4.4 Flexibility (William A. Sands).
4.5 Sensorimotor Training (Urs Granacher, Thomas Muehlbauer, Wolfgang Taube, Albert Gollhofer and Markus Gruber).
5.1 Strength and Conditioning as a Rehabilitation Tool (Andreas Schlumberger).
5.2 Strength Training for Children and Adolescents (Avery D. Faigenbaum).
5.3 Strength and Conditioning Considerations for the Paralympic Athlete (Mark Jarvis, Matthew Cook and Paul Davies).

Monday, November 29, 2010

Analyzing your health by phone?

Just read an interesting article on a new voice recognition software able to detect how you are feeling. The emotional decoding software has been developed in Israel and sounds interesting.

The technology, developed by eXaudios Technologies, is already being used to transform the world of tele sales (sadly…), and future applications could include diagnosis of conditions such as autism and Parkinson's, as well as their severity.

I believe there is mileage in looking at applications of voice and face recognition to understand fatigue/staleness and stress in athletic populations as well as in coaching staff. Previous work by Greeley et al. has suggested the possibility of detecting fatigue with voice recognition. Work by Ruiz et al. (1990) already suggested the possibility of voice analysis to detect psychological or physical state of an individual.

All I can say is that this technology is part of a speculative grant application to look at a multidisciplinary approach to understand and quantify stress and fatigue in various populations. Let’s hope it gets funded so you may see the results in few years time!

In the meantime, the video from Exaudios technologies is here.

<\/param><\/embed><\/object><\/div>";" alt="">

Sunday, November 28, 2010

Daily Twitter aggregator on Science

I am learning something new every day about twitter. I just found out it is possible to produce a daily paper with a twitter aggregator.
So here it is:
image
The daily twitter science…presenting all tweets related to #science.
It looks good and it’s an easy way to get to read interesting news.
There is also an Olympics Daily for everything #Olympics.

Friday, November 26, 2010

Low cost vertical jump tests solution

While looking for software updates I came across the new improved website of Chronojump. The Chronojump project is an interesting example of an open source platform with some cheap hardware solution to allow coaches and sports scientists with limited budgets to perform vertical jump and sprint tests. The software looks interesting and actually better than many commercial editions I have seen. Chronojump is a free software distributed under the terms of GPL license which allows people to use it for free and modify and distribute it. For more information  on GPL licences see GPL on Wikipedia.

image

The software has demos and is in various languages and allows the collection of data as well as the analysis. There is also a Mac version!

Finally, it is possible to buy the hardware (interface and contact mat) for a total of less than £150.00 (see below)

Chronopic3

 

Chronojump flexible platform

So, all in all a great concept and brilliant cheap solution for testing. I will try to get hold of the hardware to do some in-house testing on its reliability as well as functionality, but I have to say it looks great!

Wednesday, November 17, 2010

More funding for research in sport please!

The 29th of September I was invited to contribute to a panel discussion in Brussels about research in sport. In that occasion I voiced the need for further funding from the EU for sports and exercise sciences. An article is now appeared here quoting one of the many things I said in the meeting.

I hope someone in the EU will listen!

Monday, November 8, 2010

Congresso Paralimpico Sao Paulo


I am looking forward to be presenting at the Paralympic congress in Brasil next week.
I will be teaching in a pre conference seminar on training planning and will give a lecture on implementations of modern approaches to training with paralympic athletes.
Details of the conference are available here. 500 attendees are expected.
I am looking forward to meet people and learn something new.

World Class Performance Conference

I will be in Scotland for the next 3 days at the World Class Performance Conference organised by UK Sport.

Looking forward to listen to some great speakers and learn something new. Of course also looking forward to catch up with few colleagues!

Friday, October 22, 2010

Monitoring training load: Quo vadis? #3

The first two posts dealt with inexpensive and more expensive methods. I will now discuss the use of psychometric tools to get another dimension of monitoring training loads. I have not discussed the use of GPS or similar technologies, but will cover this in the next post.

I really want to present some info on various tools currently used and discuss pros and cons of them.

Profile of Mood States (POMS)

The Profile of Mood States (POMS) is a psychological rating scale used to assess transient, distinct mood states. The original scale, developed by McNair et al, has 65 items describing feelings people have.  There is a brief version,  comprising 11 of the original POMS items, developed by Cella et al, in 1987.  However, this version (Brief POMS) provides only one score for overall psychological distress.  There is yet another version called the short form of the Profile of Mood States (POMS-SF) developed by Shacham in 1983.  The short form version contains 37 items, selected from the original POMS.  It retains the six subscale information provided by POMS. The POM–Bipolar is the newest addition to the POMS. It measures moods and feelings primarily in clinical rather than nonclinical settings. It can help to determine an individual’s psychiatric status for therapy, or be used to compare mood profiles associated with various personality disorders. In nonclinical settings, the POMS–Bipolar can assess mood changes produced by techniques such as psychotherapy or meditation.

Here it is possible to download a POMS scale.

This scale has been used in a variety of populations with more than 2000 studies being performed using it. However there is a paucity of data on athletes and its links to other measures of overtraining and overreaching.

The POMS assessments are self-report inventories in which respondents rate a series of mood states (such as "Untroubled" or "Sorry for things done") based on how well each item describes the respondent's mood during one of three time frames (i.e., during the past week, including today; right now; other). Normative data are based on the "during the past week, including today" time frame. The POMS Standard form contains 65 items and takes approximately 10 minutes to complete. The respondent rates each item on a 5-point scale ranging from “Not at all” to “Extremely”. The POMS Brief form, which is ideal for use with patients for whom ordinary tasks can be difficult and time-consuming, uses the same scale as the POMS Standard form, but contains only 30 items. It takes only 5 minutes to complete. Both the POMS Standard and POMS

Brief assessments measure six identified mood factors:

• Tension-Anxiety
• Depression-Dejection
• Anger-Hostility
• Vigor-Activity
• Fatigue-Inertia
• Confusion-Bewilderment

The POMS-Bi form contains 72 items and uses a 4-point scale. It takes approximately 10 minutes to complete. Responses for the POMS-Bi range from “Much unlike this” to “Much like this”. Unlike the other POMS assessments, the POMS-Bi measures both positive and negative affects. For each of the six bipolar scales, one pole represents the positive aspects of the dimension while the other pole refers to the negative aspects:

• Composed-Anxious
• Agreeable-Hostile
• Elated-Depressed
• Confident-Unsure
• Energetic-Tired
• Clearheaded-Confused

Since 1971, numerous research studies have provided evidence for the predictive and construct validity of the POMS Standard and POMS Brief assessments. Alpha coefficient and other studies have found the POMS Standard and POMS Brief to exhibit a highly satisfactory level of internal consistency, while product moment correlations indicate a reasonable level of test-retest reliability. Factor analytic replications provide evidence of the factorial validity of the 6 mood factors, and an examination of the individual items defining each mood state supporting the content validity of the factor scores. Studies have also supported the bipolar nature of moods measured by the POMS-Bi assessment, and reliability studies have shown that POMS-Bi items demonstrate sufficient internal consistency.

One of the first encouraging studies by O’Connor et al. (1989) examined POMS scores and resting salivary cortisol levels in 14 female college swimmers during progressive increases and decreases in training volume, and were compared to the same measures in eight active college women who served as controls. Training volume increased from 2,000 yards/day in September (baseline) to a peak of 12,000 yards/day in January (overtraining), followed by a reduction in training (taper) to 4,500 yards/day by February. The swimmers experienced significant alterations in tension, depression, anger, vigor, fatigue and global mood across the training season compared to the controls. Salivary cortisol was significantly greater in the swimmers compared to the controls during baseline and overtraining, but was not different between the groups following the taper. Salivary cortisol was significantly correlated with depressed mood during overtraining (r = .50) but not at baseline or taper. Global mood, depression, and salivary cortisol were significantly higher during the overtraining phase in those swimmers classified as stale, compared to those swimmers who did not exhibit large performance decrements.

This was one of the initial studies suggesting a link between increasing training workloads, POMS scores and cortisol responses advocating the possibility of using this psychometric tool to understand how athletes were coping with training loads.

Urhausen et al. (1998) found that the parameters of mood state at rest as well as the subjective rating of perceived exertion during exercise were significantly impaired during overtraining in a follow up study with endurance athletes.

Filaire et al. (2001) used POMS together with endocrine markers to study soccer players and found that in such group decreased testosterone to cortisol ratio does not automatically lead to a decrease in team performance or a state of team overtraining. However, they suggested that combined psychological and physiological changes during high-intensity training are primarily of interest when monitoring training stress in relation to performance.

It seems therefore clear that POMS has the potential to be used to assess how athletes cope with training loads and POMS score can potentially have a link with hormonal  imbalances.

REST Q Questionnaire

The Recovery-Stress Questionnaire for Athletes [RESTQ-Sport] is a questionnaire reported to identify the extent to which athletes are physically or mentally stressed and their current perception of recovery (Kellmann & Kallus, 2000 and Kellmann & Kallus 2001). It has been used by many individuals and organizations throughout the world and can therefore be reasonably estimated to have been used on at least several thousand high-performance athletes as a diagnostic tool to detect under-recovery states and to plan recovery practices. The predecessor of this psychometric tool was a General Recovery-Stress Questionnaire (Kallus, 1995) formulated on the idea that people will respond differently to physiological and psychological demands depending on how well-rested they are when faced with these demands.

The RESTQ-Sport was constructed based on the notion that an athlete well recovered may perform better than one who is under-recovered. However, theoretical and practical concerns governed the methods used to determine the 19 subscales of the RESTQ-Sport (Kellmann & Kallus, 2000 and Kellmann & Kallus, 2001) used an a priori method of identifying each of the subscales, combining to form several scales that reflect various aspects of stress and recovery. The RESTQ-Sport was developed through research in the area of stress for the General Scale, and the Sport Scale was comprised of items observed to coincide with stress or recovery states in athletes (Kellmann & Kallus, 2001).

The test consists of 7 stress scales, and 5 recovery scales.

The scales are:

General stress
Emotional stress
Social stress
Conflict
Fatigue
Lack of energy
Physical complaints
Success
Social recovery
Physical recovery
General well-being
Sleep quality
Disturbed breaks
Burnout/emotional exhaustion
Fitness/injury
Fitness/being in shape
Burnout/personal accomplishment
Self-efficacy
Self-regulation

If you are interested in knowing more about this test and have a software to score the results, I strongly suggest you buy Dr. Kellmann’s and Kallus’ book at Human Kinetics. The book also contains a software to score the questionnaire and provide you with a graph.

The graph normally looks like this one presented by James Marshall in his blog:

Figure 1

However, you can develop your own spreadsheet to score it and graph it as I did.

image

Many studies have shown how valid and reliable this test is. However one of the most interesting ones was published by Jurimae et al. (2004). They studied the effects of increasing training loads in competitive rowers and found significant relationships between training volume and Fatigue scores (r=0.49), Somatic Complaints (r=0.50} and Sleep Quality (r=-0.58) at the end of heavy training. In addition, significant relationships were also observed between cortisol and Fatigue scores (r=0.48) at the end of heavy training as well as between changes in cortisol and changes in Fatigue (r=0.57) and Social Stress (r=0.51).

It should be pointed out that this test cannot be performed every day as it asks the athlete about how often the respondent participated in various activities during the preceding three days/nights. A Likert-type scale is used with values ranging from 0 (never) to 6 (always) to rank the frequency of activities/experiences of the preceding 3 days/nights.

BORG scale and perception of effort

The concept of perceived exertion was introduced half a century ago and an operational definition presented with methods to measure different aspects of perceived effort, strain and fatigue. One very common method is the RPE-Scale for "Ratings of Perceived Exertion" ("the Borg Scale") officially known now as the "Borg RPE Scale®".

As Professor Borg explains: “Stevens' "Ratio (R) scaling methods for determinations of S-R-functions have been improved in order not only to obtain relative functions but also direct ("absolute") levels of intensity. This was done by placing verbal anchors, from simple category (C) scales (rank order scales) such as "very weak", "moderate", "strong" etc at the best possible position on a ratio scale, a "CR-scale", covering the total subjective dynamic range, so that a congruence in meaning was obtained between the numbers and the anchors”.

If you are really interested in this you should read Dr. Elisabet Borg’s thesis here where she presents the innovative approach to develop the "Borg CR100 Scale®" (also called the "centiMax Scale"). I had the pleasure to listen to her lecture last year in Italy and I was impressed by the quality of work she has done to follow up her father’s intuitions on the original rate of perceived exertion.

You can read more about Dr. Elisabet Borg here and about Professor Gunnar Borg here.

Recommendations to use a "Borg Scale" is given by many professional societies, e.g. American Heart Association www.americanheart.org, American Thoracic Society www.thoracic.org, American College of Sports Medicine www.acsm.org, British Association for Cardiac Rehabilitation www.bacrphaseiv.co.uk.

These scales can be obtained from the firm: "Borg Perception", Gunnar Borg, Rädisvägen 124, 165 73 Hässelby, Sweden. Phone 46-8-271426. E-mail:borgperception@telia.com.

Other alternatives

There are various tools out there these days such as the following ones:

  • Life Stress (LESCA)
  • State trait anxiety inventory (STAI)
  • Athletic coping skills inventory (ACSI)

however I have no experience in using them…maybe some of you readers know more and what to write comments about any of them?

Enough info now for psychometric tools…next post will cover aspects connected to strength, power and speed.